## Facile and Exclusive Formation of Aziridinofullerenes by Acid-catalyzed Denitrogenation of Triazolinofullerenes

2012 Vol. 14, No. 23 6040–6043

ORGANIC LETTERS

Naohiko Ikuma,\* Tsubasa Mikie, Yuta Doi, Koji Nakagawa, Ken Kokubo, and Takumi Oshima\*

Division of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

ikuma@chem.eng.osaka-u.ac.jp, oshima@chem.eng.osaka-u.ac.jp

## Received October 24, 2012



Variously substituted [6,6]closed aziridinofullerenes were exclusively obtained from acid-catalyzed denitrogenation of triazolinofullerenes without formation of relevant [5,6]open azafulleroids, which are the major products on noncatalyzed denitrogenation. The mechanistic consideration by DFT calculations suggested a reaction sequence involving initial pre-equilibrium protonation of the triazoline N<sub>1</sub> atom, generation of aminofullerenyl cation by nitrogen-extrusion, and final aziridination.

Aziridinofullerenes, bearing a strained aziridine ring, are useful synthetic intermediates for highly efficient and regioselective addition of spherical fullerene cages, such as acid-induced 1,4-bisaddition of aromatic compounds,<sup>1,2</sup> [2 + 2] cycloaddition with alkynes,<sup>2</sup> and isomerization to azafulleroids.<sup>1b,3</sup> The aziridinofullerenes have been hitherto widely prepared by 1,3-dipolar cycloaddition of azides to  $C_{60}$ , followed by thermal or photochemical denitrogenation of the triazolinofullerene adducts.<sup>4</sup> Although some new synthetic methods of certain aziridinofullerenes by nucleophilic addition of chloramines,<sup>1</sup> iminophenyliodinanes,<sup>2</sup> sulfilimines<sup>3</sup> and *N*,*N*-dihalosulfonamides<sup>5</sup> were recently reported, the classical denitrogenation of labile triazolinofullerenes is still a useful procedure for the introduction of various substituents and functional groups R at the triazoline N<sub>1</sub> position such as amino acids,<sup>6</sup> saccharides<sup>7</sup> and lipid substituents.<sup>8</sup> However, the thermal denitrogenation has some difficulty in controlling the reaction conditions and also preventing the formation of major concomitant [5,6]open azafulleroids.<sup>4,9,10</sup> In this context, it is eagerly desired to find an efficient aziridination reaction and hence

<sup>(1) (</sup>a) Minakata, S.; Tsuruoka, R.; Nagamachi, T.; Komatsu, M. *Chem. Commun.* **2008**, 323–325. (b) Tsuruoka, R.; Nagamachi, T.; Murakami, Y.; Komatsu, M.; Minakata, S. *J. Org. Chem.* **2009**, *74*, 1691–1697.

<sup>(2)</sup> Nambo, M.; Segawa, Y.; Itami, K. J. Am. Chem. Soc. 2011, 133, 2402–2405.

<sup>(3) (</sup>a) Nakahodo, T.; Okada, M.; Morita, H.; Yoshimura, T.; Ishitsuka, M. O.; Tsuchiya, T.; Maeda, Y.; Fujihara, H.; Akasaka, T.; Gao, X.; Nagase, S. *Angew. Chem., Int. Ed.* **2008**, *47*, 1298–1300. (b) Okada, M.; Nakahodo, T.; Ishitsuka, M. O.; Nikawa, H.; Tsuchiya, T.; Akasaka, T.; Fujie, T.; Yoshimura, T.; Slanina, Z.; Nagase, S. *Chem. Asian J.* **2010**, *6*, 416–423.

<sup>(4) (</sup>a) Prato, M.; Li, Q. C.; Wudl, F.; Lucchini, V. J. Am. Chem. Soc. 1993, 115, 1148–1150. (b) Grosser, T.; Prato, M.; Lucchini, V.; Hirsch, A.; Wudl, F. Angew. Chem., Int. Ed. 1995, 34, 1343–1345. (c) Averdung, J.; Mattay, J. Tetrahedron 1996, 52, 5407–5420. (d) Shen, C. K. F.; Yu, H.-H.; Juo, C.-G.; Chien, K.-M.; Her, G.-R.; Luh, T.-Y. Chem.—Eur. J. 1997, 3, 744–748. (e) Wu, R.; Lu, X.; Zhang, Y.; Zhang, J.; Xiong, W.; Zhu, S. Tetrahedron 2008, 64, 10694–10698.

<sup>(5)</sup> Nagamachi, T.; Takeda, Y.; Nakayama, K.; Minakata, S. Chem.—Eur. J. 2012, 18, 12035–12045.

<sup>(6)</sup> Strom, T. A.; Barron, A. R. Chem. Commun. 2010, 46, 4764–4766.
(7) Kato, H.; Yashiro, A.; Mizuno, A.; Nishida, Y.; Kobayashi, K.; Shinohara, H. Bioorg. Med. Chem. Lett. 2001, 11, 2935–2939.

<sup>(8) (</sup>a) Murakami, H.; Watanabe, Y.; Nakashima, N. J. Am. Chem. Soc. **1996**, 118, 4484–4485. (b) Nakanishi, T.; Morita, M.; Murakami, H.; Sagara, T.; Nakashima, N. Chem.—Eur. J. **2002**, 8, 1641–1648. (c) Murakami, H.; Nakanishi, T.; Morita, M.; Taniguchi, N.; Nakashima, N. Chem. Asian J. **2006**, 1, 860–867.

we have applied possible acid-catalyzed denitrogenation of usual triazoline compounds.<sup>11</sup> Here, we present the successful and exclusive formation of [6,6]closed aziridinofullerenes from simple Brønsted/Lewis acid-catalyzed denitrogenation of triazolinofullerenes.

The preparation of various triazolinofullerenes 1a-f is described in Table 1. For the sake of safety, the employed alkyl azides were prepared from alkyl halides with sodium azide in acetonitrile, and then immediately used *in situ* for the subsequent 1,3-dipolar cycloaddition by adding C<sub>60</sub> solution in *o*-dichlorobenzene (*o*-DCB) at elevated temperature (~50 °C). To reduce the multiaddition, the reaction was ceased at the 60–70% consumption of C<sub>60</sub> (12–36 h) except for the syntheses of **1e** and **1f**, which were prepared at room temperature for the prolonged reaction time (96 h) to suppress the unfavorable thermal denitrogenation into the corresponding azafulleroids. The yields of **1a**–**f** were comparable with those of the previous syntheses of triazolinofullerenes.<sup>4</sup> All triazolinofullerenes were fully identified with <sup>1</sup>H/<sup>13</sup>C–NMR and HRMS spectrometry.

Table 1. Synthesis of Aziridinofullerenes 2a-f via Acid-inducedDenitrogenation of Triazolinofullerenes 1a-f



| entry | reactant  | $\operatorname{acid}^d$ | time (h) | conv (%) |
|-------|-----------|-------------------------|----------|----------|
| 1     | 1a        | TfOH                    | < 0.1    | 100      |
| 2     | 1a        | $CH_3SO_3H$             | 0.5      | 100      |
| 3     | 1a        | CF <sub>3</sub> COOH    | 24       | 0        |
| 4     | 1a        | $BF_3$                  | 0.5      | 100      |
| 5     | 1a        | $\mathrm{BF}_{3}^{e}$   | 3        | 81       |
| 6     | 1a        | $B(C_6H_5)_3$           | 5        | 100      |
| 7     | 1a        | AlCl <sub>3</sub>       | 24       | 0        |
| 8     | 1a        | $TiCl_4$                | 24       | 0        |
| 9     | 1b        | TfOH                    | 0.1      | 100      |
| 10    | 1c        | TfOH                    | 0.1      | 100      |
| 11    | 1d        | TfOH                    | 0.1      | 100      |
| 12    | 1e        | TfOH (0.5 equiv)        | 0.1      | 100      |
| 13    | <b>1f</b> | TfOH (1.0 equiv)        | 0.1      | 100      |

<sup>*a*</sup> Isolated yield. <sup>*b*</sup> At rt. <sup>*c*</sup> > 95% isolated yield. <sup>*d*</sup> Unless otherwise noted, 0.1 equiv of acid was used. <sup>*e*</sup> Toluene solvent.

Acid-catalyzed denitrogenation of variously alkyl-substituted 1a-e readily occurred on addition of catalytic ammounts (0.1–0.5 equiv) of superacid CF<sub>3</sub>SO<sub>3</sub>H (TfOH) and Lewis acid BF<sub>3</sub> (Table 1).<sup>12</sup> For phenyl-substituted **1f**, an equivalent amount of TfOH was needed to complete the denitrogenation (entry 13), probably because of the far more reduced basicity of the phenyl-sustituted N<sub>1</sub>-atom than that of alkyl-substituted one. Noticeably, the [6,6]closed aziridinofullerenes **2a**–**f** were exclusively obtained with no appreciable amount of [5,6]open azafulleroids as exemplified for the denitrogenation of **1a** under BF<sub>3</sub> (Figure 1). The  $C_{2v}$ symmetric structures of **2a**–**f** were fully characterized by <sup>1</sup>H/<sup>13</sup>C–NMR spectroscopy (Supporting Information).



**Figure 1.** HPLC trace of denitrogenation of 1a into 2a by BF<sub>3</sub> in toluene (cf. Table 1, entry 5).

It was also found that the denitrogenation rates of triazolinofullerens 1a-f by several Brønsted/Lewis acids depend on their acidities (Table 1). The weaker CH<sub>3</sub>SO<sub>3</sub>H needed longer reaction time (0.5h) than CF<sub>3</sub>SO<sub>3</sub>H (entries 1 and 2), and much weaker CF<sub>3</sub>COOH was ineffective (entry 3). BF<sub>3</sub> was found to more efficiently cause the denitrogenation than B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (entries 4 and 6), but no reaction occurred with AlCl<sub>3</sub> and TiCl<sub>4</sub> (entries 7 and 8). These results suggest the protonation (or coordination of Lewis acids) at the basic triazoline N<sub>1</sub> atom would be a key step of the denitrogenation (*vide infra*). In fact, the reaction was accelerated with increasing solvent polarity as seen in a

(12) An excess amount of acid in toluene led to further reaction, probably electrophilic arylation of aziridinofullerene as previously reported in refs 1b and 2.

<sup>(9)</sup> Although addition of nitrenes by denitrogenation of azides gave aziridinofullerenes with relatively high yields, their substituents were limited to carbonyl/sulfonyl compounds. See: (a) Banks, M.; Cadogan, J.; Gosney, I.; Hodgson, P.; Langridgesmith, P.; Millar, J.; Taylor, A. *Tetrahedron Lett.* **1994**, *35*, 9067–9070. (b) Smith, A. B.; Tokuyama, H. *Tetrahedron* **1996**, *52*, 5257–5262. (c) Ulmer, L.; Mattay, J. *Eur. J. Org. Chem.* **2003**, 2933–2940.

<sup>(10)</sup> Exceptionally, the reaction of hydrazoic acid with  $C_{60}$  gave aziridinofullerene, as recently reported by Akhmetov *et al.* In the light of our results and discussion in this paper, one can suppose that the excess amount of sulfuric acid used for *in situ* preparation of hydrazoic acid causes the formation of aziridinofullerene. See: Akhmetov, A. R.; Tuktarov, A. R.; Dzhemilev, U. M.; Yarullin, I. R.; Gabidullina, L. A. *Russ. Chem. Bull.* **2011**, *60*, 1885–1887.

<sup>(11) (</sup>a) Mishchenko, A.; Prosyanik, A.; Belov, P.; Romanchenko, V.; Belova, Y.; Markov, V. *Khim Geterotsikl. Soedinenii* 1984, 338–342. *Chem. Heterocycl. Compd.* 1984, 20, 270–274. (b) Wladkowski, B. D.; Smith, R. H.; Michejda, C. J. J. Am. Chem. Soc. 1991, 113, 7893–7897.
(c) Smith, R. H.; Wladkowski, B. D.; Taylor, J. E.; Thompson, E. J.; Pruski, B.; Klose, J. R.; Andrews, A. W.; Michejda, C. J. J. Org. Chem. 1993, 58, 2097–2103. (d) Rozhkov, V.; Voznesenskii, V.; Kostyanovsky, R. Russ. Chem. Bull. 1998, 47, 115–118. (e) Prosyanik, A.; Rozhkov, V.; Moskalenko, A.; Mishchenko, A.; Forni, A.; Moretti, I.; Torre, G.; Brukner, S.; Malpezzi, L.; Kostyanovsky, R. Russ. Chem. Bull. 1998, 47, 119–126. (f) Benati, L.; Calestani, G.; Nanni, D.; Spagnolo, P. J. Org. Chem. 1998, 63, 4679–4684. (g) Troyer, T. L.; Muchalski, H.; Hong, K. B.; Johnston, J. N. Org. Lett. 2011, 13, 1790–1792.

plot of log k vs solvent polarity parameter  $E_{\rm T}$  (Figure 2),<sup>13,14</sup> probably because of the stabilization of such polar acid-base complexes.



**Figure 2.** Plot of log k vs solvent polarity parameter  $E_{\rm T}$  for the reaction of **1a** with BF<sub>3</sub><sup>13</sup>

Why does the present acid-catalyzed condition exclusively provide the [6,6]closed aziridinofullerene in contrast to the thermal denitrogenation? Thermal condition has been well-known to prefer the formation of [5,6]open azafulleroid via the possible three pathways: (1) concerted, (2) ionic stepwise and (3) radical stepwise.<sup>4d,e,15</sup> A DFT calculation  $(B3LYP/6-31G(d))^{16}$  with solvent parameters (IEFPCM, o-dichlorobenzene) suggested a concerted-like transition state 1a-TS (Scheme 1, path a, and Figure 3b) as previously reported for its carbon analog, pyrazolinofullerene.<sup>17</sup> The barrier energy (34.3 kcal/mol) for the denitrogenation of **1a** is lower than those of previously reported two types of ionic transition states (N1-N2 or  $N_3-C_1$  cleavage) by AM1 calculations (46.8 and 45.2 kcal/mol, respectively).<sup>15</sup> Moreover, the calculation of inherent reaction coordinate (IRC) showed the sp<sup>2</sup>-like  $N_1$  atom considerably approached the  $C_2$  atom (purple cross in Figure 3a), implying enhanced aza-bridging over the 5,6-conjunct bond. The optimization of the forwardedge structure of the IRC calculation showed transient [5,6]closed aziridinofullerene 3a capable of undergoing labile valence isomerization to [5,6]open azafulleroid 4a (Scheme 1 and Figure 3c). This computational result

**Scheme 1.** Suggested (a) Thermal and (b) TfOH-catalytic Pathways with Calculated Energies (B3LYP/6-31G(d) with Solvent Parameter), which are Relative to the Heat of Formation of **1a** (for Thermal) and the Summation of Those of **1a** and TfOH (for Acid-catalyzed)





**Figure 3.** (a) Energies and atomic distances of IRC calculation (B3LYP/6-31G(d) with solvent parameters) for the thernal denitrogenation of **1a**. The energies are relative to the initial state **1a**. (b) Geometry of the concerted transition state **1a**-TS. (c) Geometry of [5,6]open **4a** (and N<sub>2</sub>) derived from the optimization of the IRC forward-edge structure (s = 2.50).

<sup>(13)</sup> The 0.1 equiv of BF<sub>3</sub> was used  $(1.29 \times 10^{-3} \text{ M})$ . The k value in toluene is 0.310 M<sup>-1</sup> s<sup>-1</sup> and the relative k values in other solvents are 1.97 (b), 2.42 (c), 3.03 (d), and 6.84 (e), respectively.

<sup>(14)</sup> Reichardt, C. Chem. Rev. 1994, 94, 2319-2358.

<sup>(15)</sup> Cases, M.; Duran, M.; Mestres, J.; Martín, N.; Solà, M. J. Org. Chem. 2001, 66, 433-442.

<sup>(16)</sup> All DFT calculations were carried out with *Gaussian 09* software. Its full citation is shown in Supporting Information.

<sup>(17)</sup> Wallenborn, E.; Haldimann, R.; Klarner, F.; Diederich, F. *Chem.*—*Eur. J.* **1998**, *4*, 2258–2265.



**Figure 4.** (a) Energies and atomic distances of IRC calculation (B3LYP/6-31G(d) with solvent parameters) for the acid-catatytic denitrogenation. The energies are relative to the initial state  $\mathbf{la} \cdot \mathbf{H}^+$ . (b) Geometry of N<sub>1</sub>-acidified  $\mathbf{la} \cdot \mathbf{H}^+$ . (c) Transition state geometry ( $\mathbf{la} \cdot \mathbf{H}^+$ -TS) of denitrogenation of  $\mathbf{la} \cdot \mathbf{H}^+$ . (d) Geometry of aminofullerenyl cation  $5\mathbf{a}$  (and N<sub>2</sub>) derived from the optimization of the IRC forward-edge structure (s = 2.64). (e) LUMO orbital distribution and natural bonding orbital charge (in parentheses) of the ionic intermediate  $5\mathbf{a}$ .

obviously conforms with the selective formation of azafulleroids on usual thermal conditions.

By contrast, TfOH can protonate an N<sub>1</sub> atom to give triazolinium intermediate  $1a \cdot H^+$  with a long  $N_1 - N_2$ distance (1.7 Å) (Scheme 1, path b, and Figure 4b).<sup>18</sup> A transition state calculation of denitrogenation of  $1a \cdot H^+$  showed far more lower barrier energy (3.3 kcal, Figure 4c) than that of the thermal reaction (34.3 kcal). In contrast to the case of thermal condition, the distance between the sp<sup>3</sup>-like ammonium  $N_1$  and  $C_2$ (or  $C_3$ ) is little changed by the IRC calculation, due to the absence of potential  $N_1$  lone pair electrons (Figure 4a). Furthermore, the optimization of the IRC forward-edge structure resulted in aminofullerenvl cation 5a, with N1 being located almost perpendicular to the  $C_1-C_2-C_3$  plane (Scheme 1 and Figure 4d). The higher LUMO coefficient and/or positive natural bonding charge on  $C_1$  (relative to  $C_2$  and  $C_3$ ) by a DFT calculation would be responsible for the formation of [6,6]closed aziridinofullerene. The total barrier energy of the rate-determing protonation (10.6 kcal/mol) and the fast denitrogantation (3.3) is still less than the half of the thermal denitrogenation (34.3), so that the acidcatalyzed reaction seems to proceed very soomthly at room temperature and exclusively provide [6,6]closed aziridinofullerenes.

In conclusion, synthetically useful aziridinofullerenes were exclusively obtained from simple acid-catalyzed denitrogenation of triazolinofullerenes, and the DFT calculations suggested a possible mechanism involving the initial protonation at the  $N_1$  atom, followed by denitrogenation into the aminofullerenyl cation, and the final aziridination. This effective synthetic method would open a way to more versatile and regioselective functionalization of fullerenes directed to photovoltaic materials<sup>5,19</sup> and biological applications.<sup>7</sup>

Acknowledgment. This work was partly supported by Grant-in-Aid for Young Scientist (B) (No. 24750039) from Japan Society for the Promotion of Science (JSPS), and by Health Labour Sciences Research Grants from the Ministry of Health, Labour and Welfare of Japan (MHLW)

Supporting Information Available. General procedure for the reaction and identification of compounds by <sup>1</sup>H, <sup>13</sup>C NMR spectra, and FAB/MALDI-MS of 1a-fand 2a-f, and calculational results (energy, imaginary frequency and coordinates). This material is available free of charge via the Internet at http:// pubs.acs.org.

<sup>(18)</sup> Although the triazoline  $N_3$  atom would be more easily protonated, such  $N_3$ -protonated species does not lead to the denitrogenation (see, ref 11b).

<sup>(19) (</sup>a) Yang, C.; Cho, S.; Heeger, A. J.; Wudl, F. *Angew. Chem., Int. Ed.* **2009**, *48*, 1592–1595. (b) Park, S. H.; Yang, C.; Cowan, S.; Lee, J. K.; Wudl, F.; Lee, K.; Heeger, A. J. J. Mater. Chem. **2009**, *19*, 5624–5628.

The authors declare no competing financial interest.